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ABSTRACT: To control the activity of photodynamic agents by pH, an electron donor-connecting cationic porphyrin, meso-
(N′,N′-dimethyl-4-aminophenyl)-tris(N-methyl-p-pyridinio)porphyrin (DMATMPyP), was designed and synthesized. The
photoexcited state (singlet excited state) of DMATMPyP was deactivated through intramolecular electron transfer under a neutral
condition. The pKa of the protonated DMATMPyP was 4.5, and the fluorescence intensity and singlet oxygen-generating activity
increased under an acidic condition. Furthermore, the protonation of DMATMPyP enhanced the biomolecule photooxidative
activity through electron extraction. Photodamage of human serum albumin (HSA) was observed under a neutral condition because
a hydrophobic HSA environment can reverse the deactivation of photoexcited DMATMPyP. However, an HSA-damaging
mechanism of DMATMPyP under a neutral condition was explained by singlet oxygen production. Therefore, it is indicated that the
protein photodamaging activity of DMATMPyP goes into an OFF state under a neutral hypoxic condition. Under an acidic
condition, the HSA photodamaging quantum yield by DMATMPyP through electron extraction could be preserved in the presence
of a singlet oxygen quencher. Photooxidation of nicotinamide adenine dinucleotide by DMATMPyP was also enhanced under an
acidic condition. This study demonstrated the concept of using pH to control photosensitizer activity via inhibition of the
intramolecular electron transfer deactivation and enhancement of the oxidative activity through the electron extraction mechanism.
Specifically, biomolecule oxidation through electron extraction may play an important role in photodynamic therapy to treat tumors
under a hypoxic condition.

■ INTRODUCTION

Electron transfer is the key factor in controlling the
photochemical process of photoexcited molecules.1−6 Fluo-
rescence sensing,7−9 bioimaging,10−14 singlet oxygen (1O2)
production,15−21 and photooxidative activities22 of photo-
excited molecules can be controlled through intramolecular
electron transfer. Changes in the redox potential of a molecule
by its surroundings, for example, pH,9,18−22 metal ion
concentration,7,8 and interaction with macromolecules, such
as DNA,15−17 can inhibit the electron-transfer quenching,
leading to an active (ON) state. One important application of
the OFF → ON control is in the photomedicinal property of
molecules. For example, cancer-selective photodynamic
therapy (PDT) can be realized by controlling the activity of
photosensitizing molecules (photosensitizers). PDT is a less-
invasive treatment for cancer and other nonmalignant

conditions.5,23−27 Administered photosensitizers are illumi-
nated by nonthermal visible light, resulting in biomolecule
damage through photochemical reactions. In general, 1O2

production through energy transfer from the excited photo-
sensitizer to oxygen molecules is considered to be an important
mechanism in biomolecule damage.28,29 Electron transfer from
biomolecules to the photoexcited photosensitizers can be an
alternate mechanism of PDT.30−32 It has been reported that
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the pH of cancer cells is slightly acidic because of the
enhancement of glycolysis.33−35 As mentioned above, electron
transfer can be controlled by pH. Furthermore, in general, a
protonated cationic compound becomes a stronger electron
acceptor than its nonprotonated form.36 Therefore, the pH-
induced change in the intramolecular electron transfer can be
applied to cancer-selective PDT.18−22 The aim of this study is
to examine the concept of using pH to control the activity of a
cationic water-soluble porphyrin photosensitizer. Tetrakis(N-
methyl-p-pyridinio)porphyrin (TMPyP) has been studied as
the model compound for PDT.17,29 Because the water-
solubility of previously reported porphyrins was relatively
low,18−20,22 the use of TMPyP-based porphyrin may be
advantageous for the application. To control the photosensitiz-
ing activity of TMPyP, meso-(N′,N′-dimethyl-4-aminophenyl)-
tris(N-methyl-p-pyridinio)porphyrin (DMATMPyP, Figure 1)

was designed and synthesized. The dimethylaniline (DMA)
moiety was used as a pH-dependent electron donor. The
photochemical property and biomolecule-damaging activity of
DMATMPyP were examined.

■ RESULTS
Energy Level of the Intramolecular Charge Transfer

State. The structures of DMATMPyP and its protonated form
(H+-DMATMPyP) were optimized using density functional
theory (DFT) calculation at the ωB97X-D/6-31G* level
(Supporting Information). Their orbital energies were also

calculated. These calculations showed that the highest
occupied molecular orbital (HOMO) of DMATMPyP is
located on the DMA moiety (Supporting Information).
Consequently, it is speculated that the photoexcited state of
DMATMPyP can be deactivated via intramolecular electron
transfer from the DMA moiety to the porphyrin ring, forming a
charge-transfer (CT) state (Figure 1). In the case of H+-
DMATMPyP, the HOMO is located on the porphyrin ring,
suggesting that the electron transfer-mediated quenching can
be suppressed under an acidic condition. In addition, the
highest molecular orbital energy of the porphyrin ring of H+-
DMATMPyP (−17.4 eV, in vacuum, calculated using the DFT
method) became lower than that of DMATMPyP (−12.9 eV).

Gibbs Energy of the Intramolecular Electron Trans-
fer. The Gibbs energy (ΔGiet) of the intramolecular electron
transfer from the DMA moiety to the porphyrin ring was
roughly calculated using the redox potentials and excitation
energy of DMATMPyP (Supporting Information). The
obtained value (ΔGiet = −0.73 eV) supports the possibility
of quenching through intramolecular electron transfer.

pKa of the Protonated DMATMPyP. The UV−Vis
absorption spectra of DMATMPyP shifted depending on pH
(Figure 2A). This absorption spectral change of DMATMPyP
by pH could be explained by the protonation of the DMA
moiety and the central pyrrole nitrogen atoms.37 Analysis of
the relationship between absorbance and pH (Figure 3) was

Figure 1. Molecular structure and the proposed relaxation schemes of
DMATMPyP and the protonated form (H+-DMATMPyP).

Figure 2. (A) Absorption and (B) fluorescence spectra of DMATMPyP. The sample solution contained 5 μM DMATMPyP in a 10 mM sodium
phosphate buffer (indicated pH). The excitation wavelength was 550 nm.

Figure 3. Relationship between the photochemical parameters of
DMATMPyP (absorbance at 440 nm and fluorescence quantum
yield) and the pH of the solvent. The sample solution contained 5 μM
DMATMPyP in a 10 mM sodium phosphate buffer (indicated pH).
The excitation wavelength was 550 nm. The method of analysis is
described in the Supporting Information.
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performed using a method similar to that in previous reports
(Supporting Information).22 The obtained pKa values were 4.5
and 2.1. These values could be explained by the fact that the
pKa of H

+-DMATMPyP is 4.5 and that of the central nitrogen
atoms is 2.1. Indeed, a similar pKa value of the central nitrogen
atoms has been reported in the case of a similar porphyrin.37

pH-Dependent Fluorescence Change. The fluorescence
intensity was also changed by pH, and a relationship similar to
that with the absorbance change was observed (Figure 3). A
relatively small fluorescence quantum yield (Φf) value (0.037
at pH 7.6 and pH 6.4) under neutral conditions suggests the
quenching of the singlet excited (S1) state of the porphyrin
ring through intramolecular electron transfer. The observed Φf
value at pH 3.2 (0.12) was significantly larger than that under
the neutral condition and suggests the inhibition of electron
transfer-mediated quenching.
Triplet Excited-State Formation and 1O2 Production.

Transient absorption measurements showed the typical peak at
around 470 nm,38 which was assigned to the absorption
spectrum of the triplet excited (T1) state (Supporting
Information). Enhancement of the T1-state formation under
an acidic condition was qualitatively demonstrated. 1O2
production photosensitized by DMATMPyP was confirmed
by near-infrared emission measurement, as previously reported
(Supporting Information).39 The calculated values of 1O2
production quantum yield (ΦΔ) are listed in Table 1. The
analyzed time constant of 1O2 emission showed that the
lifetimes of 1O2 were 3.8 μs (pH 7.6) and 3.9 μs (pH 3.2).
These values were similar to the reported values for the 1O2
lifetime in an aqueous solution.17 Furthermore, these results
showed that the lifetime of 1O2 in an aqueous solution is barely
affected by pH in this experimental region (pH 7.6−3.2).
Indeed, the previous reports demonstrated that 1O2 lifetime in
deuterium oxide (72−78 μs)40 is independent of acid
concentration (72−77 μs in the presence of 5 mM trifluoro-
acetic acid).36 The T1 lifetime was also estimated from these
emissions using the equation in the literature41 (Supporting
Information). The obtained values of T1-state lifetimes were
1.6 μs (pH 7.6) and 1.3 μs (pH 3.2). These values were almost
the same as the decay time of the T1 transient absorption
(about 1 μs, Supporting Information). The T1-state lifetime is
mostly determined by the quenching by oxygen molecules and
becomes about 1−2 μs in an aqueous solution.17,30

Interaction between Human Serum Albumin and
DMATMPyP. To investigate the protein photodamage by
DMATMPyP using human serum albumin (HSA), their
interaction was studied. The absorption spectra of DMATM-
PyP in the visible region were changed by the addition of HSA
(Supporting Information). Since HSA has no absorption in the
visible region, the absorption change can be explained by the
binding interaction.30−32 Analysis of the absorbance change by
the previously reported method30−32 showed that the binding
constant (Kbc) under a neutral condition (3.3 × 106 M−1, pH
7.6) was larger than that under an acidic condition (2.1 × 105

M−1, pH 3.2). The distance between the binding DMATMPyP
molecule and the tryptophan residue of HSA, which is located
almost at the center of HSA, was estimated based on an
analysis using the Förster resonance energy transfer (FRET)
method based on the energy transfer theory42 (Supporting
Information). The obtained values were 57 and 55 Å under pH
7.6 and 3.2, respectively.

Photosensitized Protein Oxidation by DMATMPyP.
The photosensitized protein oxidation activity of DMATMPyP
was examined by a fluorescence intensity of HSA, as previously
reported.30−32 The abovementioned Kbc values showed that
the binding ratios of DMATMPyP to HSA were 95% (pH 7.6)
and 60% (pH 3.2) in this experimental condition (10 μM HSA
and 5 μM DMATMPyP). The tryptophan residue of HSA can
be an important indicator of protein oxidation. HSA has one
tryptophan,43 which is easily oxidized through electron transfer
and 1O2 generation, leading to the diminishment of its intrinsic
fluorescence.30−32 We observed that HSA photooxidation was
irradiation-dose dependent (Figure 4). The extent of photo-

sensitized HSA oxidation caused by DMATMPyP increased
under a neutral condition. The quantum yields of HSA
photodamage through 1O2 generation and the electron
transfer-mediated mechanism were examined in light of the
scavenger effect of NaN3, a strong physical quencher of

1O2,
44

as in previous reports.30−32 The photosensitized HSA damage
increased linearly within 30 min. Therefore, the amount of
HSA damage by DMATMPyP with NaN3 for 30 min of
photoirradiation was compared with that without NaN3. The
estimated quantum yields are listed in Table 1.

Photosensitized NADH Oxidation by DMATMPyP.
Nicotinamide adenine dinucleotide (NADH) was used as the
target biomolecule to examine the photosensitizing activity of
DMATMPyP. NADH can be oxidized by 1O2 production and
electron transfer reactions.22 Because NADH is a relatively

Table 1. Quantum Yields of Biomolecule Damage and 1O2 Production Photosensitized by DMATMPyPa

pH ΦHSA(T) ΦHSA(ET) ΦHSA(Δ) ΦNADH(T) ΦNADH (ET) ΦNADH(Δ) ΦΔ

7.6 4.4 × 10−4 ∼0 4.4 × 10−4 0.03 0.023 0.007 0.18
3.2 1.6 × 10−4 1.4 × 10−4 0.2 × 10−4 0.18 0.14 0.044 0.36

aΦHSA(T): total quantum yields of HSA damage; ΦHSA(ET): quantum yield of HSA damage through electron transfer; ΦHSA(Δ): quantum yield of
HSA damage through 1O2 production; ΦNADH(T): total quantum yields of NADH decomposition; ΦNADH (ET): quantum yield of NADH
decomposition through electron transfer; ΦNADH(Δ): quantum yield of NADH decomposition through 1O2 production.

Figure 4. (A) Time profile of HSA damage photosensitized by
DMATMPyP and (B) the effect of a 1O2 quencher. The sample
solution containing 10 μM HSA and 5 μM DMATMPyP with or
without 10 mM NaN3 in a 10 mM sodium phosphate buffer
(indicated pH) was irradiated with an LED (585 nm, 2.0 mW cm−2).
The effect of NaN3 was examined for 30 min photoirradiation. Data
are presented as mean ± standard error (SE) (n = 3).
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small molecule and the binding interaction with DMATMPyP
is considered to be negligibly small, an environmental effect
such as the case of HSA does not occur. Therefore, relatively
high concentration of NADH (100 μM) against DMATMPyP
(5 μM) was used. The typical absorption spectrum of NADH,
around 340 nm, was decreased by photoirradiation with
DMATMPyP. The NADH photooxidation was increased
under an acidic condition (Figure 5). Similar to the analysis

of HSA damage, the NADH photooxidation by DMATMPyP
with NaN3 for 5 min of photoirradiation was compared with
that without NaN3. The estimated quantum yields of NADH
oxidation photosensitized by DMATMPyP are listed in Table
1.

■ DISCUSSION
The photoexcited state (S1 state) of DMATMPyP was
deactivated through intramolecular electron transfer from the
DMA moiety, the electron-donating moiety, in an aqueous
solution. DFT calculation and the observed redox potentials
supported this intramolecular electron transfer. The pKa of the

protonated DMA moiety of H+-DMATMPyP was 4.5, and the
fluorescence intensity was recovered in an acidic solution. DFT
calculation predicted that the intramolecular electron transfer
in H+-DMATMPyP is suppressed because the highest
occupied orbital energy of the DMA moiety becomes lower
than that of the porphyrin ring. These results indicated that the
relaxation process of the DMATMPyP S1 state could be
controlled by pH through protonation of the electron-donating
moiety, as proposed in Figure 1. The photosensitized 1O2-
generating activity of DMATMPyP was increased under an
acidic condition. Transient absorption spectrum measurements
verified that T1-state formation is enhanced under an acidic
condition (Supporting Information). Inhibition of the S1-state
quenching leads to the increase in intersystem crossing
efficiency to the T1 state and 1O2 generation.
The absorption spectral change showed that DMATMPyP

bound to HSA. The tryptophan residue is located near the
center of HSA,43 and HSA has pockets as drug-binding sites
(Sudlow’s site I and site II).45 The FRET method suggests that
the distance between DMATMPyP and the tryptophan residue
is almost 55 Å. Since the size of HSA is almost 100 Å,43 this
result suggests that DMATMPyP binds mostly to the surface
of HSA pockets. The estimated binding constants between
DMATMPyP and HSA under neutral (pH 7.6) and acidic (pH
3.2) conditions are 3.3 × 106 M−1 and 2.1 × 105 M−1,
respectively. HSA that is positively charged by the amino acid
protonation under an acidic condition should inhibit the
interaction with H+-DMATMPyP.
Photoirradiation of DMATMPyP induced tryptophan

residue damage. The estimated quantum yield of HSA damage
at pH 7.6 was larger than that at pH 3.2. As mentioned above,
a suppression of the interaction under an acidic condition may
decrease the HSA damage by H+-DMATMPyP at pH 3.2.
Furthermore, a hydrophobic environment of protein is not
appropriate for the intramolecular electron transfer because the
CT-state energy level depends on the surrounding dielectric
constant and increases in a less-polar environment.46 The
environment of HSA may lead to recovery of the photo-
sensitizing activity of porphyrin. Therefore, the total HSA
damage was decreased under an acidic condition. However,

Figure 5. (A) Time profile of NADH oxidation photosensitized by
DMATMPyP and (B) the effect of a 1O2 quencher. The sample
solution containing 100 μM NADH and 5 μM DMATMPyP with or
without 10 mM NaN3 in a 10 mM sodium phosphate buffer
(indicated pH) was irradiated with an LED (585 nm, 2.0 mW cm−2).
The effect of NaN3 was examined for 5 min photoirradiation. Data are
presented as mean ± SE (n = 3).

Figure 6. Diagram of the pH-controlled activity of the DMATMPyP photosensitizer and the relative energy levels of the highest occupied orbitals
for the porphyrin moiety, DMA moiety, and targeting biomolecule.
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electron transfer-mediated HSA damage could be enhanced
under an acidic condition. Analysis of the HSA-damaging
quantum yield showed that the mechanism of HSA damage
photosensitized by DMATMPyP at pH 7.6 is mainly explained
by 1O2 generation. The protein damage through 1O2
production is suppressed under hypoxia in both cases of acidic
and neutral conditions. However, the oxidative activity of
DMATMPyP through the electron-transfer mechanism was
enhanced under an acidic condition. DFT calculation showed
that the molecular orbital energy level of the porphyrin ring
becomes lower in the protonated state, H+-DMATMPyP
(Supporting Information). Consequently, photosensitized
HSA damage by DMATMPyP through electron transfer
could be preserved at pH 3.2 in the presence of a 1O2
quencher. It is speculated that DMATMPyP can selectively
oxidize proteins under an acidic hypoxic condition (Figure 6).
NADH photooxidation was also induced by DMATMPyP.
NADH is a relatively small biomolecule and does not form a
binding complex with DMATMPyP. The results of NADH
oxidation showed that the photooxidative activity of
DMATMPyP can be increased under an acidic condition in
a simple aqueous solution. Because NADH is easily oxidized,
the observed quantum yield through the electron-transfer
mechanism was not significantly increased under an acidic
condition.
In summary, the relaxation process of DMATMPyP can be

controlled by pH through the protonation of the DMA moiety.
Fluorescence intensity, T1-state formation, and the resulting
ΦΔ are increased in the H+-DMATMPyP state. The total
quantum yield of HSA photodamage was decreased under an
acidic condition because the interaction between protonated
HSA and H+-DMATMPyP is weaker than that under a neutral
condition and a hydrophobic environment reverses the
photodamaging activity of DMATMPyP. However, under a
hypoxic condition, DMATMPyP can selectively photosensitize
protein damage through the electron transfer-mediated
mechanism under an acidic condition since 1O2-mediated
biomolecule damage is not effective, whereas the electron
transfer-mediated mechanism is enhanced by the protonation.
Although the pKa 4.5 of H+-DMATMPyP is smaller than the
physiological pH (around 7)35 and not an ideal value for
clinical use, this study demonstrated the concept of activity
control based on inhibition of the intramolecular electron-
transfer deactivation and enhancement of the oxidative activity
through protonation of the photosensitizer. Specifically,
electron transfer-mediated biomolecule oxidation can become
an important PDT mechanism to treat tumors under a hypoxic
condition.

■ EXPERIMENTAL SECTION
Materials. DMATMPyP was obtained by the methylation

of meso-(N,N-dimethyl-4-aminophenyl)-tris(p-pyridyl)-
porphyrin (DMATPyP). Synthesis of DMATPyP was
according to the previously reported method.47 To obtain
DMATMPyP, the methylation of DMATPyP was carried out
according to the literature.48,49 Details about the synthesis and
characterization of DMATMPyP are described in the
Supporting Information. The spectroscopic-grade distilled
water was purchased from Dojin Chemicals Co. (Kumamoto,
Japan). Sodium phosphate buffer (pH 7.6) and NADH were
from Nakalai Tesque Inc. (Kyoto, Japan). Dimethyl sulfoxide-
d6 and sodium azide were from FUJIFILM Wako Pure
Chemical Co. (Osaka, Japan). Methyl iodide and diethyl ether

were from Kanto Chemical Co., Inc. (Tokyo, Japan). HSA was
purchased from Sigma-Aldrich Co. LLC. (St. Louis, MO,
USA). These reagents were used as received. A sodium
phosphate buffer (pH 6.4) was prepared from disodium
hydrogen phosphate dodecahydrate and sodium dihydrogen
phosphate dihydrate (Nacalai Tesque, Inc., Kyoto, Japan).
Sodium phosphate buffers (pH 4.4 and 3.2) were prepared
from sodium dihydrogen phosphate dihydrate (Nacalai
Tesque, Inc.) and 0.05 M phosphoric acid (Kanto Chemical,
Co. Inc., Tokyo. Japan). An acidic solution (pH 2.0) was
prepared from 0.1 M hydrochloric acid solution (FUJIFILM
Wako Pure Chemical Co.) and distilled water (FUJIFILM
Wako Pure Chemical Co.).

Measurements. The absorption spectra of DMATMPyP
were measured with a UV−Vis spectrophotometer UV-
1650PC (Shimadzu, Kyoto, Japan). The fluorescence spectra
of samples were measured with an F-4500 fluorescence
spectrophotometer (Hitachi, Tokyo, Japan). The Φf was
measured with an absolute photo-luminescence quantum yield
measurement system (C9920-02, Hamamatsu Photonics KK,
Hamamatsu, Japan). The 1O2 formation photosensitized by
DMATMPyP was directly measured by near-infrared lumines-
cence around at 1270 nm from deactivated 1O2, which
corresponds to the 1O2 (1Δg)-

3O2(
3Σg

−) transition as
previously reported.39 The ΦΔ was determined from the
comparison of the 1O2 emission intensities by DMATMPyP
solution and methylene blue (ΦΔ = 0.52 in water).50A cyclic
voltammogram was measured with a potentiostat/galvanostat
(HA-301, Hokuto Denko Co., Tokyo, Japan), a function
generator (DF1906, NF Co., Yokohama, Japan), and a data
logger (midi LOGGER, GL900-4, Graphtec Co., Yokohama,
Japan) using a platinum working electrode (ALS Co., Ltd.,
Tokyo, Japan), a platinum counterelectrode (ALS Co., Ltd),
and saturated calomel electrode (SCE, ALS Co., Ltd).

Calculations. The optimized structure and energy of
DMATMPyP and H+-DMATMPyP were calculated by the
DFT method at the ωB97X-D/6-31G* level utilizing the
Spartan 18′ (Wavefunction Inc., CA, USA).
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