Leakage current suppression by layered insertion of Y₂O₃ for ferroelectric HfO₂

°Kazuto Mizutani¹, Takuya Hoshii¹, Hitoshi Wakabayashi¹, Kazuo Tsutsui², Kuniyuki Kakushima¹

¹School of Engineering, Tokyo Institute of Technology, 4259 S2-20, Nagatsuta, Midori-ku, Japan ²Institute of Innovative Research, Tokyo Institute of Technology, 4259 S2-20, Nagatsuta, Midori-ku, Japan E-mail: mizutani.k.ac@m.titech.ac.jp

Abstract

The effect of the localized distribution of Y atoms in 7nm-thick Y-doped HfO₂ films on the ferroelectric characteristics is investigated. Although a slight decrease in the remnant polarization (P_r) is observed, ferroelectric properties can be obtained with the localized distribution. Suppressed leakage current with better switching cycle endurance can be obtained with the localized distribution. Reduced generation of oxygen vacancy (V_0) might be the characteristic of the layered design.

1. Introduction

Ferroelectric HfO₂ films have been studied extensively for memory applications [1]. Among numbers of dopants to obtain ferroelectric HfO2 films, the Y-atom-doping has been widely used as the antiferroelectric tetragonal phase can be suppressed [2]. The doping is performed by alternative injection of Hf and Y atom precursors in atomic-layer deposition followed by oxidation. Generally, the vapor pressure of the precursors of Y atoms is quite low; bubbling is commonly used to enhance gas delivery. The deposition rate should be precisely tuned so as not to change the composition of the Y-doped HfO₂ film. Meanwhile, ALD has the capability to deposit a monolayer (ML) or sub-ML by self-limit process [3]. Therefore, the controllability of the doping might be easy with localized Y₂O₃ insertion in the HfO₂. In this study, the advantage of localized Y₂O₃ layers in HfO₂ films is addressed. The localized insertion of the Y2O3 layer might be useful to prevent unintentional crystallization during the deposition process, as is used for localized Al₂O₃ layer for ZrO₂ film in DRAM applications [4].

2. Sample fabrication

Metal-insulator-metal (MIM) capacitors were fabricated on an n⁺Si substrate with bottom and top W electrodes. About 7-nm-thick Y-doped HfO₂ films were deposited by ALD with 4 different Y₂O₃ and HfO₂ thickness combinations (Table 1). A Y-doped HfO₂ film (sample 1), with 13 sets of Y₂O₃/HfO₂= 0.03/0.5nm can be considered as a uniformly doped film (fig. 1(a)). On the other hand, sample 2 with Y₂O₃/HfO₂=0.2/2.7nm for 2 sets is the locally inserted film (fig. 1(b)). The localized presence of Y atoms can be confirmed by DF-TEM image. Note that the thickness of 0.2 nm is slightly less than 1 ML (0.23nm) of Y₂O₃. All the effective doping concentrations in the Ydoped HfO₂ layers are designed to be 5 mol%. Annealing was conducted at 600°C for 1 min in a forming gas (3%H₂+97%N₂) atmosphere. Capacitance-voltage (*CV*), polarization-voltage (PV) and leakage current (JV) measurements were performed to elucidate the advantage of the localized insertion process.

3. Results and Discussions

PV hysteresis curves on different voltage sweeps and CV characteristics of the samples are shown in fig. 2. Decent ferroelectric hysteresis loops were observed for all the samples when applied peak-to-peak voltage (V_{pp}) exceeds 4 V (about 2.7 MV/cm). The P_r obtained at 3 V_{pp} decreases from 20 to 15 μ C/cm² by further localizing the Y₂O₃ position. The CV curves revealed that high dielectric constants of 34 and 32 could be obtained with uniform and localized doped films, respectively. A smaller dielectric constant is useful for memory applications.

The switching cycle test with a pulse height of V_{PP} of 4 V at 500 kHz shows a wake-up effect for all the samples (fig. 3) [5]. This fact indicates an incomplete transition of the ferroelectric phase during the annealing. A better endurance before dielectric breakdown by a factor of 5 in the switching cycles was obtained with localized Y₂O₃ films. *JV* characteristics revealed better insulation with the Y₂O₃ localized HfO₂ films (fig. 4). The evolution of leakage current measured at 1.5 V on the switching cycles indicates a gradual increase before the breakdown event. The behavior is a typical sign of defect-mediated formation of a conductive filament composed of oxygen vacancy (V_O) in HfO₂ films [6].

4. Conclusions

Ferroelectric characteristics were obtained with uniform and localized doped HfO₂ films. A slight decrease in the initial P_r from 20 to 15 μ C/cm² indicates an incomplete transition to the ferroelectric phase in the HfO₂. However, suppression in the leakage current, as well as improvement in the switching cycle endurance, can be achieved with localized doped HfO₂.

Acknowledgment

The work was supported by JST COI Gran Number JPMJCE1309. One of the authors, K. M., was supported by The FUTABA Foundation.

References

- [1] T. S. Boscke, Appl. Phys. Lett., 99, 102903 (2011).
- [2] J. Niinisto, Electrochem. Solid-State Lett., 12, G1 (2009).
- [3] J. Song, Jpn. J. Appl. Phys., 59, SMMB01 (2020).
- [4] H. J. Cho, Solid-State Electronics 51, 1529 (2007).
- [5] M. Pesic, Adv. Funct. Mater, 26, 4601 (2016).
- [6] A. S. Sokolov, Appl. Surf. Sci., 434, 822 (2018).

sample ID	1	2	3	4
HfO ₂ (nm)	0.5	1.3	1.8	2.7
Y ₂ O ₃ (nm)	0.03	0.09	0.15	0.20
# of set	13	4	3	2
total thickness (nm)	7.1	6.9	7.6	7.6
	16		÷ .	

Table1 Thicknesses design of the fabricated samples.

uniform *content* localized

Fig. 1 (a) Uniform and (b) localized Y_2O_3 distribution in HfO₂ film. Localized Y atoms was observed even at 600°C annealing for 100 min.

Figure 2 PV hysteresis loops and CV characteristics of the samples.

Figure 3 Switching cycle endurance of the samples. Wakeup effects were observed for all the samples. A better endurance can be obtained with Y_2O_3 localized HfO₂ films.

Figure 4 JV curves of before switching indicate better insulating properties with Y₂O₃ localized HfO₂ film.

Figure 5 Leakage current of the samples at each switching cycles measured at 1.5 V. An early degradation is observed for uniformly doped HfO₂ films.