Recovery of ferroelectric property after endurance test by positive reset voltage application for CeO_x-capped ferroelectric HfO₂ films

Kazuto Mizutani, T. Hoshii, H. Wakabayashi, K. Tsutsui, K. Kakushima

Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

E-mail: mizutani.k.ac@m.titech.ac.jp

Abstract

The influence of CeO_x capping on HfO_2 films on the ferroelectric property is investigated. An improved switching endurance was found with the capping, but a fatigue effect appeared. A better breakdown only in the negative voltage application indicates the movement of oxygen ions in the capped layer to the underlying HfO_2 layer. A slight recovery with a better endurance property was obtained by applying a negative voltage among the switching pulses.

1. Introduction

Ferroelectric HfO2 films have attracted considerable attention owing to their scalability below 10 nm thickness [1]. Reliability issues, however, including switching endurance, wake-up, or fatigue effects, remain. The ferroelectric property in HfO2 films is influenced by oxidation time during atomic layer deposition (ALD) processes; thus, the control of the oxygen vacancy (V_0) concentration in HfO₂ films is essential [2,3]. Recently, an improvement in the endurance by CeO_x capping on Y-doped HfO₂ (Y:HfO₂) films was reported [4]. The capping function is reported to supply or absorb O atoms to the underlying HfO_2 layer to control the V_0 concentration in the HfO₂ layer [5]. However, a detailed analysis of the reliability is not clarified yet. In this study, we show that oxygen ion (O^{2-}) movement in the capped layer may be the origin for better endurance and the appearance of the fatigue effect.

2. Device structure

Metal-insulator-metal (MIM) capacitors were fabricated on an n⁺Si substrate with bottom and top W electrodes. 7.5-nm-thick Y:HfO₂ films were all deposited by ALD using tetrakis-dimethylamino hafnium (TDMAH), tris-isopropyl-cyclopentadienyl yttrium (ⁱPrCp)₃Y, and precursors. The doping concentration in the Y:HfO₂ layer is designed to be 5 mol%. The capped CeO_x layer with a thickness of either 0.6, 1, or 2 nm was deposited by tris-ethyl-cyclopentadienyl cerium (EtCp)₃Ce precursor. The MIM capacitors were annealed at 500°C for 1 min or 100 min in a forming gas (3%H₂+97%N₂) atmosphere.

3. Ferroelectric property and endurance with CeO_x-capping

The MIM capacitor, annealed for 1 min, showed better ferroelectric hysteresis loops when the capping thickness is more than 0.6 nm (fig. 1). Annealing for a long period (100 min) further increases the ferroelectricity, but the capping still has the advantage (fig. 2).

Switching cycle test at V_{pp} =4V revealed a wake-up effect for non-capped capacitor and showed breakdown

before 10^8 cycles. The capped capacitor, on the other hand, showed a reduced wake-up effect but with a fatigue effect once the switching cycle exceeds 10^6 times. The breakdown occurred before 10^{10} cycles, a significant improvement to the non-capped capacitor (fig.3). The DC current is measured regularly among the cycling test and is shown in fig. 4. Note that 0.5 V includes the switching current component and 1.5 V is the leakage component. A gradual current decrease at 0.5 V for capped capacitor indicates the reduction of P_r along with the cycle test. We can confirm that the suppressed leakage current contributes to the prolonged endurance. The effect is more pronounced for lower switching voltage (V_{PP} =3.6V).

The breakdown measurements of the MIM capacitors are shown in fig. 5. While no difference was found in the positive voltage application, a larger breakdown voltage was obtained in the negative direction with the capping. As the oxygen ion conductivity of CeO_x is known to be large [6], one can suspect that O^{2-} ions drift to the underlying HfO₂ layer to compensate for the created V₀ filament in the layer (fig. 6 (a)). Besides the compensation of the V₀ in the HfO₂ layer, the O^{2-} ions may pin the ferroelectric domain wall and might be the reason for the fatigue effect (fig. 6 (b)).

4. Recovery of ferroelectricity with negative voltage

A reset voltage (V_{reset}) was applied to the capped capacitor after switching of 10^8 times. We observed a recovery in the ferroelectric property when a V_{reset} of 2 V was used (fig. 7). By applying a V_{reset} for every 10^6 cycles, the fatigue effect was found to be suppressed (fig. 8). The impact of the positve V_{reset} is hypothesized to the extraction of O^{2-} as well as electrons trapped at CeO_x/HfO_2 interface.

5. Conclusion

The effect of CeO_x capping on Y:HfO₂ layer on the ferroelectric properties is investigated. Improvement in ferroelectricity with better endurance was obtained. The effect is presumably due to the oxygen ion movement in the CeO_x to compensate for the V_O in the HfO₂ layer. The fatigue effect can be considered to be the O²⁻ and electrons to pin the domain. Applying a positive reset voltage among the cycling test recovers the ferroelectricity, unpin the domains.

Acknowledgment

The work was supported by JST COI Gran Number JPMJCE1309. One of the authors, K. M., was supported by The FUTABA Foundation.

References

- [1] T. S. Böscke, et al, Appl. Phys. Lett., 99, 102903 (2011).
- [2] M. Pešic, et al, Adv. Funct. Mater., 26, 4601 (2016).
- [3] T. Mittmann, et al, IEDM, pp. 378 (2020).
- [4] J. Molina, et al, IMW, 5.3 (2020).
- [5] N. Umezawa, Appl. Phys. Lett., 96, 162906 (2010).[6] M. Mamatrishat, et al, Vacuum, 86, 1513 (2012).

Fig. 1 Hysteresis loops with different CeOx-capping layer thicknesses.

Fig. 2 Hysteresis loops with capacitors annealed at 500°C for 100 min.

Fig. 3 Switching endurance under $V_{PP}=2$ V at 500 kHz.

Fig. 4 Current (J) measured during switching cycles. Note that J at 0.5 V includes the switching current component and J at 1.5 V is the leakage current.

Fig. 5 Breakdown measurement of the capacitors for both negative and positive directions.

Fig. 6 (a) O^{2-} ions in the capping layer compensate the V_0 in the HfO₂ layer to prevent from breakdown. (b) O^{2-} ions can pin the ferroelectric domain to decrease the ferroelectricity.

Fig. 7 Recovery of the ferroelectricity with positive V_{reset} application. ($V_{\text{reset}}=2V$ for 1 s)

Fig. 8 Relaxed fatigue effect with positive V_{reset} for every 10⁶ cycles.